

Methodology to Predict Roughness Characteristics of Flexible Pavement Systems in Texas

Presented by: Narain Hariharan

STUDY OBJECTIVES

Develop Computer Program 'Mr.TxES'

MOTIVATION

-Why Quantify Roughness?

- Impacts ride quality, vehicle costs etc.
- Helps monitor pavement networks.
- Prioritize future projects.
- How to Quantify Roughness?
 - PSI (Pavement Serviceability Index)
 - 0 to 5 user subjective rating of the Pavement
 - IRI (International Roughness Index)
 - Terminal IRI (Inches/Mile) = $533.45 \times \exp[-0.4664 \text{ PSI}_{f}]$

(Reference: Lytton et. al. 2004)

REVIEW OF AASHTO APPROACH

Loss of Serviceability due to Expansive Subgrade Soils (ΔPSI_{swell}) is:

$$\Delta PSI_{swell} = 0.00335. V_r .P_s .(1 - e^{-\Theta t})$$

'V_r' is Potential Vertical Rise, 'P_s' is Swell Probability, 'et' is Rate of Swell

Limitations:

- 'Active Zone' not considered
- Effect of 'Shrinking' soils not considered
- Predictions are conservative

SIGNIFICANCE OF SUCTION

Suction < Equilibrium Suction → Drying Cycle (Soil Shrinks) Suction > Equilibrium Suction → Wetting Cycle (Soil Swells)

PROPOSED APPROACH

STEPS INVOLVED

TMI DISTRIBUTION IN USA

Thornthwaite moisture index distribution in the United States. (After Thornthwaite, 1948)

LABORATORY TESTS

Pressure Plate Test (ASTM D2325)

Suction Compression Index, $\gamma_h = \frac{\frac{\Delta V}{V}}{\Delta pF}$

LABORATORY TESTS

Rapid Accelerated Tri-Axial Test (AASHTO T 307)

Resilient Modulus, $M_r = \frac{Deviatoric Stress (\sigma_d)}{Recovered Elastic Strain (\varepsilon_r)}$

BASIS FOR ESTIMATION VM

Step 1: Establish Suction vs. Depth profile as per Mitchell (1979)

$$U(z) = U_e \pm U_0 \exp\left[-\left(\frac{n\pi}{\alpha}\right)^{0.5} z\right]$$

'Ue', 'Uo', 'n', ' α ' and 'z' are obtained through empirical relationships based on TMI and Climate data.

Step 2: Compute Volumetric Swelling and Shrinkage Strains within Depth increments

$$\left(\frac{\Delta V}{V}\right)_{i,swelling} = -\gamma_h \log_{10}\left(\frac{U_f}{U_i}\right) - \gamma_\sigma \log_{10}\left(\frac{\sigma_f}{\sigma_i}\right)$$

Step 3: Compute Vertical Swell and Shrinkage Strains and hence total VM

$$\Delta H_{total} = \sum_{i=1}^{n} f_i \left(\frac{\Delta V}{V}\right) \Delta z_i H$$

'f' is the crack fabric factor and assumes values of 0.5 for Shrinkage cycle and 0.8 for Swelling cycle.

BASIS FOR ESTIMATING ROUGNESS

- Establish following Pavement Properties:
 - Initial Serviceability Rating (4.2 for Flexible Pavmements)
 - Design life (t) in years
 - Design Traffic (W₁₈) ESALs
 - Design Reliability (Z_r)
 - Subgrade Resilient Modulus (M_r)
 - Total Vertical Movement (ΔH_{total})

$$\Delta PSI_{t} = (PSI_{0} - 1.5)exp\left[-\left(\frac{\rho_{s}}{t}\right)\right]^{0.66}$$

$$\rho_{s} = A_{s} - B_{s}\Delta H_{total}$$

$$B_{s} = 17.96 + 4.195Z_{R}$$

$$A_{s} = t\left[\ln(10^{-\lambda})^{1.52}\right]$$

$$\lambda = \left[0.4 + \frac{1,094}{(SN+1)^{5.19}}\right]x\left[\log_{10}W_{18} - 9.36\log_{10}(SN+1) + 8.27 - 2.32\log_{10}M_{r} + Z_{R}s_{0}\right]$$

UGRO

'Mr. TxES' COMPUTER PROGRAM

× Mr.TxES Æ Mr.TxES Vertical Movement and Pavement Roughnness on Texas Expansive Soils Mr.TxFS Version - 1000 Copyright © 2013 - Texas A&M University Texas A&M University All Rights Reserved. Product details: Mr.TxES is designed to be a handy tool for calculating the vertical change in height of the subgrade soils across Texas due to fluctuations in suction, characteristic of the climatic profile of the location in question. The sum of the shrinkage and swell defines the overall vertical movement in the subgrade that would be expected to impact pavement roughness. Mr.TxES also has the capacity to calculate the change in pavement serviceability over its design life as a result of traffic and/or swell. More Info OK

'Mr.TxES' USER GUIDE SNAPSHOT

Hide Back Forward	Home Print Options
Contents Index Sean	Mr.TxES User Guide
	Suction Units Conversions 1 bar = 100 kPa $pF = \log(\text{kPa}) + 1.01 = \log(\text{cm H}_20)$
	I. Vertical Movement Calculations Location Inputs
	Thornthwaite Moisture Index (I) The Thornthwaite Moisture Index (I) was obtained for the respective counties in Texas based on the Thornthwaite Moisture Index distribution map of the United States
	after Thornthwaite (1948). The link below matches the cities in Texas to their respective counties.
	http://swco.ttu.edu/reference/Collections/NewspaperLists/county.asp Equilibrium Suction (U e), in pF
	The equilibrium suction (U_e) was calculated based on the approach used by Lytton et.al (2007) as: Ue = $3.5633 * e^{-0.005 II_m}$

fugro

'Mr.TxES' PROJECT IINPUTS

Æ	N	Ar.TxES — 🗖 🗙				
File	Help About					
G	eneral Information					
	Project Name:	Grand Parkway				
	Date:	10/19/2015				
	User Name:	Narain				
	Soil Type:	CH				
1	Plasticity Index(PI):	58				
A	nalysis Type					
	Vertical Mo	vement Calculation				
	Pavement Roughness Calculation					
	Both					

-fugro

VERTICAL MOVEMENT ESTIMATION

A		Ve	ertical Mov	ement Calc	ulation			x
County:	Anderson	Anderson, TX						
-Based on	Location —							
Tł	nornthwaite	Moisture Index (TMI o	r I _m): 14					
	I	Equilibrium Suction, U _e	(pF): 3.32		Manual Inpu	ιt		
	De	epth of Active Zone, H _s	(cm): 192.15					
	Wet/dry Ex	cursions, n (cycles per y	rear): 1.00		Manual Inpu	ıt		
A	Amplitude o	of Suction Variation, U _o	(pF): 1.5					
Input D	ata							
		Us Us	e Automati	ic f	Use Auto	omatic		
Crack	Fabric F	actor, f (swel 0.8		K _o (wet): 0.67			
Crack	Fabric Fa	ctor, f (shrink/@lby)	:	K₀ (dry): 0.33			
Suction M	lesurement	Input						_
⊖ Manu	ual Input	 Manual Input (Sing 	le) 🔿 Use S	5WCC Calcula	ition			
		Suction Range (bar)	γ_h (Swell)	γ_h (Shrink)	Diffusivity α (Swell)	Diffusivity α (Shrink)		
		A11	0.0245	0.0244	0.0028	0.0028]	
Result —								
			∆H Swell	(in.): 1.1308				
		4	\H Shrinkage	(in.): -0.6981				
			ΔH Total	(in.): 1.8289				
							Next >	>

TUGRO

VERTICAL MOVEMENT ESTIMATION

A		SWCC				_ 🗆	×
Sample Number: 1							
Dry Weight of Sample,g: 110.85	Pressure (bar)	Suction (log kPa)	Suction (pF)	Mass (g)	Water (%)	Mass of water (g)	
W Saturated,g: 127.43	0.50	1.70	2.71	125.1	12.86	14.25	
Water Content.w.%: 14.96	5.00	2.70	3.71	124.4	12.12	13.55	
	10.00 15.00	3.00 3.18	4.01 4.19	124.1 123.9	11.95 11.77	13.25 13.05	

Volume Measurement Data Matric Trimmed Average Δ Mass (g) Volume (cm³) Bar suction, pF weight (g) 1.00 3.01 1620 78.13 84.79 3.71 77.43 5.00 1620.4 84.38 10.00 4.01 1621.6 75.93 83.48 4.19 1622 75.33 83.12 15.00

Result –

Suction range (bar)	γh (swell)	γ _h (shrink)
0.00 - 1.00	0.00710	0.00706
1.01 - 5.00	0.00710	0.00706
5.01 - 10.00	0.03570	0.03532
10.00 - 15.00	0.02452	0.02441

UGRO

-	-	-	1	
-	-	-	1	
-		-	- 1	

PAVEMENT ROUGHNESS ESTIMATION

L	Pavement	t Rou	ghness	Calculation			
Pavement Properties Inputs							
Structural Number (SN):	4.76		🗸 Use S	tructural Number Tab	le		
		\cup	AC Lave	r Thickness (in.)		4	
			Layer Co	efficient For AC		0.44	
			Base Lay	er Thickness (in.)		10	
			Layer Co	efficient For Base		0.2	
			Sub-Base	e Layer Thickness (in.)		0	
			Layer Co	efficient for Sub-Base		0.12	_
			Subgrad	e Layer Thickness (in.)		10	
			Layer Co	efficient for Subgrade		0.1	
Cumulative ESALs (W18):	16005350.58	\bigcirc	✓ Use E	SAL Table			
			DesignL	ife			25
			Projected	l Construction Year A	ADT		2500
			Percent I	Heavy Trucks Class 4 (or grea	ter	70
			Percent 7	Frucks in Design Direc	tion		50
			Percent 1	Irucks in Design Lane	TOAT	(1)	100
			Truck Equivalency Factor (avg. ESAL per truck)				1.537
Desilient medulus (M.) in mis	101(0.00	\bigcirc	Truck Volume Growth Rate				2
Resident modulus (M_R) in psi:	10160.00	\odot	Use RaTT Test				
			Sample Diameter (in.)		6		
			Sample I	Height (in.)	6		
			Deviatoric Stress (psi)		4		
			Confining Pressure (psi)		01	1	
			Minimu	m Deformation (mm)	0.0)5	
Design Reliability (%):	90						
0 3(7)							
Initial Serviceability, PSI _i :	4.2						
∆H Total (mm.):	46.4550						
D II							
Kesult	Initial Servi	iceabili	ity, PSI _i :	4.2			
			ΔPSI:	1.8420			
	Terminal Servi	iceabili	ity, PSL:	2 3580			
	T in the server	-1 1771	- (11.)	177.000			
	Termina	al IRI(i	n/mile):	177.6058			

£

fugro

PAVEMENT ROUGHNESS ESTIMATION

🕰 Pavement Roughness Calculation — 🗆 🗙
Pavement Properties Inputs
Structural Number (SN): 4.75 💿 🗆 Use Structural Number Table
Cumulative ESALs (W11): 1600000.00 🕢 🗌 Use ESAL Table
Resilient modulus (M _R) in psi: 10000.00 🕢 🗌 Use RaTT Test
Design Reliability (%): 90
Initial Serviceability, PSI _i : 4.2
ΔH Total (mm.): 46.4550
Result
Initial Serviceability, PSI: 4.2
Δ PSI : 1.9319
Terminal Serviceability, PSIr: 2.2681
Terminal IRI(in/mile): 185.2114
Charts
2.00 1.50 5 1.00 0.50 0.50 0.00 100.00 200.00 300.00 400.00 500.00 Time (Months) Traffic+Swell — Traffic Only
< Prev Done

TUGRO

SUMMARY

FUTURE WORK/ IDEAS

- 'Mr.TxES' → 'Mr.USES'
- Sensitivity Analysis
- Cost Analysis
- Automate SWCC generation
- Incorporate use of LTPP traffic data

QUESTIONS??

THANK YOU

NARAIN HARIHARAN Fugro Roadware 8613 Cross Park Drive, Austin, TX-78748 Cell: 979-739-5725 Email: nhariharan@fugro.com